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Abstract Reinforcement learning describes motivated behav-
ior in terms of two abstract signals. The representation of
discrepancies between expected and actual rewards/punish-
ments—prediction error—is thought to update the expected
value of actions and predictive stimuli. Electrophysiological
and lesion studies have suggested that mesostriatal prediction
error signals control behavior through synaptic modification
of cortico-striato-thalamic networks. Signals in the ventrome-
dial prefrontal and orbitofrontal cortex are implicated in
representing expected value. To obtain unbiasedmaps of these
representations in the human brain, we performed a meta-
analysis of functional magnetic resonance imaging studies that
had employed algorithmic reinforcement learning models
across a variety of experimental paradigms. We found that
the ventral striatum (medial and lateral) and midbrain/
thalamus represented reward prediction errors, consistent with
animal studies. Prediction error signals were also seen in the

frontal operculum/insula, particularly for social rewards. In
Pavlovian studies, striatal prediction error signals extended
into the amygdala, whereas instrumental tasks engaged the
caudate. Prediction error maps were sensitive to the model-
fitting procedure (fixed or individually estimated) and to the
extent of spatial smoothing. A correlate of expected value was
found in a posterior region of the ventromedial prefrontal cor-
tex, caudal and medial to the orbitofrontal regions identified in
animal studies. These findings highlight a reproducible motif
of reinforcement learning in the cortico-striatal loops and
identify methodological dimensions that may influence the
reproducibility of activation patterns across studies.

Keywords Prediction error . Expected value . Reinforcement
learning .Meta analysis

Introduction

Behavior can be controlled by reward or punishment, and by
the environmental stimuli that predict them. The way that
animals develop representations of these predictive relation-
ships has been described in terms of mathematical models of
reinforcement learning, a restricted set of which have domi-
nated experimental and theoretical attention. With the advent
of new neurophysiological and imaging methods, insights
from these models have advanced our understanding of the
role of cortico-striato-thalamic networks, the midbrain, the
amygdala, and the monoamine systems in behavioral adapta-
tion. In particular, the activity of dopamine neurons in the
mesostriatal pathway has been shown to conform to the pre-
dictions derived from formal learning rules (Waelti,
Dickinson, & Schultz, 2001), and may also distinguish be-
tween particular instantiations of reinforcement learning
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models (Roesch, Calu, & Schoenbaum, 2007). Combined
with imaging and neurophysiology, they have helped us un-
derstand better the types of computations that take place in the
reward system and the alterations observed in neurological
and psychological disorders, including Parkinson’s disease
(M. J. Frank, 2005), depression (Kumar et al., 2008), schizo-
phrenia (Gradin et al., 2011), eating disorders (G. K. Frank,
Reynolds, Shott, & O’Reilly, 2011), addiction (Chiu,
Lohrenz, & Montague, 2008), and suicidal behavior
(Dombrovski, Szanto, Clark, Reynolds, & Siegle, 2013).
Here, we provide an introduction to the constructs of predic-
tion error—the discrepancy between the expected and obtain-
ed outcomes—and expected value. We then offer a brief over-
view of the putative neural substrates of these computations
and present a meta-analysis of functional imaging studies that
have examined the neural correlates of the prediction error and
expected value constructs derived from reinforcement learn-
ing models.

The Rescorla–Wagner model of Pavlovian conditioning

Building on the earlier Bush–Mosteller model (Bush &
Mosteller, 1951, 1953), Rescorla and Wagner (RW) devel-
oped their influential model of Pavlovian conditioning
(Rescorla & Wagner, 1972). The RW model provides an ac-
count of animal learning from multiple conditioned stimuli
(CSs). One challenge here is posed by the interactions be-
tween stimuli—such as the Kamin blocking effect, or dimin-
ished conditioned responding to stimulus X following AX→
unconditioned stimulus (US) pairing preceded by A → US
(Kamin, 1968). The dependent variable in the RW model is
the unobserved, but theoretically plausible associative
strength (V) of the CS–US pairing. Associative strength is
conceptually close to the expected reward value of a given
stimulus (at least when a single appetitive US is presented).
Another innovation, which has enabled an elegant explanation
of the Kamin blocking effect, was to combine the associative
strength of all stimuli present on a given trial, in order to
generate a prediction error (PE). In other words, according
to RW, an outcome is surprising only to the extent that it is
not predicted by any of the stimuli. Here is how the model
describes the change in the associative strengths of the two
stimuli after a trial in which the stimulus compound AX is
followed by a US:

ΔVA ¼ αAβUS λUS−VAXð Þ;
ΔVX ¼ αXβUS λUS−VAXð Þ; ð1Þ

where α is the learning rate for each stimulus, ß is the learning
rate for the US, λUS is the asymptote of associative strength
that the US will support, and VAX = VA + VX. Thus, if stimulus
A is pretrained to the asymptote, subsequent training with the

AX compound generates no PE for X. Besides blocking and
overshadowing, the RWmodel has successfully accounted for
a variety of Pavlovian and instrumental phenomena, despite a
number of limitations (see Miller, Barnet, & Grahame, 1995).

Temporal difference models

Temporal difference (TD) models of animal learning, like RW,
learn from PEs (Sutton & Barto, 1998), and describe an ap-
proach modeling prediction and optimal control. TD aims to
predict all future rewards, discounting them over time:

R tð Þ ¼ r t þ 1ð Þ þ γr t þ 2ð Þ þ γ2r t þ 3ð Þ þ…

þ γkr t þ k þ 1ð Þ; ð2Þ

where r is future reward and γ is the temporal discount factor,
reflecting a preference for immediate over delayed rewards.
Instead of waiting until all of the outcomes are experienced,
TD estimates future rewards by repeating the following algo-
rithm in each learning episode (time step):

V tð Þ←V tð Þ þ α r t þ 1ð Þ þ γV t þ 1ð Þ−V tð Þ½ �; ð3Þ

where α[r(t + 1) + γV(t + 1) – V(t)] is the prediction or tem-
poral difference error, and γV(t + 1) takes the place of the
remaining terms γr(t + 2) + γ2r(t + 3) + . . . + γkr(t + k + 1).

To deal with the temporal distribution of predictive cues or
response options, TD methods introduce the idea of eligibility
traces. That is, only closely preceding (eligible) cues or ac-
tions are credited for reward or blamed for punishment.

TD provides a real-time account of learning that RW and
other trial-level models do not. A key area of divergence be-
tween RW and TD is that TD treats rewards themselves and
the cues that predict them as, in principle, equivalent, insofar
as they are both stimuli that can invoke changes in the valua-
tion of future rewards. Both conditioned cues and outcomes
can influence value prediction and can elicit PEs. This inno-
vation provides an effective account of the learning of se-
quences of stimuli, since conditioned cues can come to oper-
ate as reinforcers in their own right (Dayan & Walton, 2012).
Moreover, the reinforcement value is collapsed into a single,
common currency across different reinforcers. On the other
hand, RW is a model that describes the extent to which the
US (e.g., reward or punishment) can be predicted by environ-
ment stimuli. Thus the major focus of RW is the processing of
the US, PEs occur only at the US, and all conditioned cues are
treated as distinct entities competing to predict the US
(Rescorla & Wagner, 1972). At the same time, one can see
the parallel between the summed associative strengths of all
presented CSs in RW and value in TD.
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These differences between trial-level models such as RW
and TD lead to differential predictions regarding the putative
neural learning signals, as is illustrated in Fig. 1. A trial-level
model aligns its associative strength (or expected value) signal
with the CS, and PE with the US. One can see that, when the
signals from a trial-level model such as RW are aligned with
stimuli in real time, the time course of TD error approximates
the combination of associative strength at the CS and PE at the
US. On the other hand, in trial-by-trial functional magnetic
resonance imaging (fMRI) learning experiments with short
and, especially, fixed CS–US intervals, the predicted blood
oxygenation level dependent (BOLD) signal corresponding
to the associative strength or value generated by trial-level
models will often approximate those of TD.

Neural correlates of prediction errors: model-based
neuroimaging and electrophysiology

Prediction-error-based learning models have also enabled
neuroscientists to interpret neural signals, most prominently
from midbrain dopaminergic neurons (Schultz, Dayan, &
Montague, 1997). The firing rates in dopaminergic neurons
in this region are consistent with the predictions of RW: A
blocking experiment revealed that firing rates reflect the con-
tingency between a stimulus and a reward, rather than the
mere pairing of the two (Waelti et al., 2001). Moreover,

specific predictions of the TD model were also corroborated
in these neurons: Most notably, neural firing within dopami-
nergic neurons in the midbrain gradually becomes coupled to
predictive stimuli rather than to the rewards themselves
(Schultz et al., 1997). In addition, a study of conditioned in-
hibition revealed that an inhibitory cue, predictive of reward
omission, could reduce the firing rates of subpopulations of
these neurons (Tobler, Dickinson, & Schultz, 2003).

A natural development of this work was to apply the same
behavioral paradigms and reasoning to human neurophysio-
logical research. Although event-related potential and
magnetoencephalographic research has attempted to address
analogous questions (Holroyd & Coles, 2008; Krigolson,
Hassall, & Handy, 2014), the relatively limited capability of
these methods to register unambiguous physiological re-
sponses from subcortical or brainstem regions has meant that
the majority of progress must depend on fMRI. Since one of
the seminal studies of this field (O’Doherty, Dayan, Friston,
Critchley, & Dolan, 2003), the primary focus of fMRI studies
has generally been the ventral striatum, rather than the mid-
brain itself. A typical explanation (see, e.g., Roesch, Calu,
Esber, & Schoenbaum, 2010; Tobler, O’Doherty, Dolan, &
Schultz, 2006) is that the fMRI response reflects the phasic
input to a structure (Logothetis & Pfeuffer, 2004), rather than
the local processing or the region’s output. Thus, given that
the dopaminergic neurons of the ventral tegmental area (VTA)

Fig. 1 The temporal difference (TD) model describes a real-time course
of reward prediction error (PE) signals; PEs transfer from the uncondi-
tioned stimulus (US) to the conditioned stimulus (CS) as learning pro-
gresses. In contrast, trial-level models such as Rescorla–Wagner describe
PE only at the US, whereas associative strength (conceptually close to

value) signals build at the CS. It is easy to see the resemblance between
the TD error signal and the combination of PE and associative strength
signals in trial-level models. *Before the asymptote is reached. At asymp-
tote, PE at the US disappears
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project to the areas of the striatum (Haber, Fudge, &
McFarland, 2000), fMRI-measured ventral striatal activation
might then be seen as the downstream consequence of VTA
firing. This perspective has found considerable support in the
literature, although there are two areas of possible complica-
tion. First, there is evidence of prediction-error-related activa-
tion in the VTA itself (e.g., D’Ardenne, McClure, Nystrom, &
Cohen, 2008), implying that local processing may also be
relevant. Second, the ventral striatum also receives input from
a wide range of cortical and subcortical regions (Voorn,
Vanderschuren, Groenewegen, Robbins, & Pennartz, 2004),
any of which could influence its activity and information pro-
cessing within it. A further advantage of fMRI is that, al-
though focused analysis of PE responses in the VTA and ven-
tral striatum has been performed with this technique
(D’Ardenne et al., 2008), its capability to identify signal
across the entire brain has allowed for an examination of re-
lated signals in other parts of the cortex. Integration and anal-
ysis of the rich data sets obtained using fMRI methods are the
focus of the present work.

Learned value, economic subjective value, and their neural
correlates

In economics, subjective value or utility is the theoretical com-
mon currency used to compare disparate goods. Economic
commodities can be thought of as reinforcers, and labor or a
price paid as analogues of effort during operant conditioning
(Lea, 1978). Although economic decision-making has tradi-
tionally been studied using stylized description-based pros-
pects, recent research has suggested that experience-based ex-
periments resembling animal-learning paradigms provide
complementary models of real-life economic decision-
making (Hertwig & Erev, 2009). Thus, to the degree that eco-
nomic preferences incorporate one’s reinforcement history,
one may hypothesize that revealed preferences and
feedback-based animal learning depend on similar neural
computations (Fellows, 2011). One of the motivations for
the present analysis was to examine whether the cortical re-
gions tracking learned reward value coincide with the medial
prefrontal regions that have been shown to signal economic
subjective value on revealed preference tasks (Peters &
Buchel, 2010).

In addition, animal electrophysiological studies have
shown responses that accord well with what might be expect-
ed of learned-value signals in regions including the ventral
prefrontal cortex (vPFC) and limbic areas such as the cingu-
late, and the striatum (Samejima, Ueda, Doya, & Kimura,
2005; Simmons, Ravel, Shidara, & Richmond, 2007; Wallis
& Miller, 2003). Here, the vPFC refers to the orbitofrontal
cortex (OFC), the ventromedial prefrontal cortex (vmPFC),
and more lateral regions of the ventral prefrontal cortex. The
vmPFC denotes the mammalian paralimbic agranular/

dysgranular prefrontal cortex, encompassing monkey areas
14, 25, and rostral 24 and 32 of Petrides and Pandya (1994),
and human areas 25 and rostral 32 and 24; the orbital aspect of
this region is also referred to as themedial orbitofrontal cortex
(mOFC). Associative signals represented in the vPFC possess
many properties of abstract value, in that they are sensitive to
delays and probability of reward, as well as to the presence of
alternatives (Kennerley, Dahmubed, Lara, & Wallis, 2009;
Kennerley & Wallis, 2009b; Kobayashi, Pinto de Carvalho,
& Schultz, 2010; Padoa-Schioppa & Assad, 2008; Roesch &
Olson, 2005; Tremblay & Schultz, 1999). These signals are
Bsubjective,^ integrating such internal states as hunger
(Bouret & Richmond, 2010; Critchley & Rolls, 1996). Other
decision-related signals have been found in motor prefrontal
and parietal cortex (Platt & Glimcher, 1999). However, it ap-
pears that these signals may reflect salience (Leathers &
Olson, 2012) or motivation (Roesch & Olson, 2004), rather
than value.

The present meta-analysis

The present work provides a quantitative summary of fMRI
evidence on PE and expected value representations in the
human brain using an activation likelihood estimation (ALE)
meta-analysis. It extends recentmeta-analyses of value and PE
signals (Bartra, McGuire, & Kable, 2013; Clithero & Rangel,
2014; Garrison, Erdeniz, & Done, 2013; Levy & Glimcher,
2012) in two ways. First, to control methodological heteroge-
neity, our analysis included only studies that have used delta-
rule reinforcement learning models. This enabled a better-
controlled evaluation of the consequences of variations in
methodology. We could thus identify the core networks that
are most reliably detected. Second, to reveal the distributed
networks that subserve human reward learning, we jointly
mapped the regions responsive to value and PE. On the basis
of the animal and human literature reviewed above, we hy-
pothesized that PE signals would be observed in the striatum
(including putamen, caudate, and nucleus accumbens) and
midbrain. In contrast, we hypothesized that expected value
signals would be represented in the vmPFC.

In contrast to previous meta-analyses (Bartra et al., 2013;
Garrison et al., 2013; Levy & Glimcher, 2012), we focused
only on studies in which signals derived from a reinforcement
learning algorithm served as explanatory variables in the anal-
ysis of fMRI data. This allowed us to examine whether differ-
ences in approaches to generating such signals could yield
different neural maps. We also examined other methodologi-
cal variables that could have an impact on the observed coor-
dinate maps derived from reward prediction error (RPE) ex-
periments. Our variables of theoretical interest included in-
strumental or Pavlovian designs and reinforcer type (mone-
tary, liquid, or social). Accounting for the effects of these
variables would demonstrate the degree to which the RPE
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maps are dependent on choices of experimental parameters.
To this end, we had several secondary hypotheses.

1. Pavlovian versus instrumental paradigms: Prior studies
had suggested differential roles for striatal subregions in
Pavlovian versus instrumental tasks. Pavlovian RPEs re-
cruit the ventral striatum, whereas RPEs from instrumen-
tal tasks (most of which include a Pavlovian component)
appear to recruit both ventral and dorsal striatum
(O’Doherty et al., 2004).

2. Fixed/individual learning: All models evaluated in the
present work include a parameter that controls the rate at
which conditioning occurs. There are three main strate-
gies for determining the learning rate, all of which are
evaluated in a study by Cohen (2007). He compared the
neural correlates of the parameters generated by individ-
ual fits of each participant’s responses (Bindividual^) with
the correlates of either the group means of such parame-
ters (Bgroup fixed^) and an arbitrary fixed estimate of the
group response (Bfixed^). Despite somewhat different
patterns of activation, the two methods were broadly con-
sistent in indexing similar limbic and prefrontal regions of
interest. In general, individually fitted parameters can ar-
guably better accommodate the subject’s behavior (Estes
& Maddox, 2005), and thus may provide a more optimal
fit of the underlying neural signals. Yet noisy, stochastic
behavior, or directed exploration, may deleteriously affect
the reliability of estimated parameters. Group-fitting
(Bgroup fixed^) of parameters provides a form of regular-
ization (Daw, 2011), leading to more a conservative pa-
rameterization that is potentially less susceptible to such
misspecification. It may also be well suited to studies of
patient groups (e.g., Bernacer et al., 2013). We tested
whether each approach biased the discovery of particular
brain regions. Alternatively, either approach could simply
be a more accurate way of characterizing the neural cor-
relates of individual acquisition curves, and thus be asso-
ciated with similar, if more finely resolved, patterns of
activation.

3. US-aligned outcome PE versus CS- and US-aligned TD
error: As we noted above, the time course of TD error
differs from that of the outcome PE generated by trial-
level models. It has been suggested that TD error may
be exclusively represented in the ventral striatum, where-
as outcome PE is signaled by a larger network including
the caudate (Niv, Edlund, Dayan, & O’Doherty, 2012).
Moreover, exclusively outcome-coupled PE regressors
may be more susceptible to ongoing activation coupled
to the outcome, distinct from PE itself, such as the appe-
titive response to a rewarding outcome (Rohe, Weber, &
Fliessbach, 2012). We contrasted TD and outcome PE
studies, expecting to see more extensive activation to out-
come PE and also anticipating that a conjunction analysis

would reveal the ventral striatum as the site of overlap
between these studies.

4. Reward type: Previous meta-analyses have examined pat-
terns of activation in response to various primary and
secondary rewards (Sescousse, Caldu, Segura, &
Dreher, 2013). However, any differences and commonal-
ities may have been driven by sensory properties of the
rewarding stimuli. By contrast, our focus on model-
estimated PEs allowed us to examine the spatial segrega-
tion or dissociation of more abstract neural computations
triggered by disparate rewards. On the basis of the animal
studies reviewed above, we hypothesized that the ventral
striatum would be the shared area of activation for all
types of rewards.

5. Smoothing: A variable without theoretical interest that
might affect the pattern of data was the smoothing kernel
employed by the study. Recently, Sacchet and Knutson
(2013) have shown that the application of large smoothing
kernels can bias the localization of ventral striatal re-
sponses to reward anticipation. In addition, it is not easy
to detect BOLD activations in subcortical, and especially
brainstem, nuclei because of their small size: only 60mm3

for the nucleus of VTA, for example (Paxinos & Huang,
1995). Yet, when preprocessing whole-brain fMRI im-
ages, researchers often use spatial filters exceeding the
size of potential signal sources in these nuclei. The
matched filter principle suggests that such large filters
are likely to reduce the signal-to-noise (SNR) ratio in
these structures. We tested whether this size mismatch
affected the detection of PE signal sources in the basal
ganglia and midbrain. We contrasted studies that used
smaller (<8-mm) filters with those that used larger filters.

Method

Study selection criteria and definitions

Studies were selected by searching PubMed and Google
Scholar to identify fMRI studies that employed computational
algorithms to investigate the neural correlates of reinforce-
ment learning studies. Combinations of keywords were used:
[Breinforcement learning^ OR Breward learning^],
[Bprediction error^ OR Bexpected value^], and [Brescorla-
wagner^ OR Btemporal-difference^ OR BQ-learning^]. We
also identified studies using reference tracing and citations
within reviews. The search yielded 40 studies. Each article
was reviewed by at least two authors to make sure that it
fulfilled the following criteria:

1. Only studies that used a reinforcement learning model
(i.e., trial-level delta-rule model, TD, or back-
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propagating connectionist model) to create regressors for
a general linear model (GLM) analysis of BOLD signal
were included. The common feature of these studies was a
PE-based learning rule.

2. Our PE analyses used maps that revealed a positive cou-
pling with appetitive Bsigned^ RPEs, which are positive
when the reward is higher than expected or negative when
it is lower than expected. Maps reporting aversive PEs
were excluded, since their number was insufficient for
an ALE analysis. Similarly, negative correlations with
RPE or expected value (EV) regressors were also not
analyzed, since these are not systematically reported.

3. EV was defined as the extent to which stimuli or actions
were predictive of reward.

4. Studies that had used modified delta-rule algorithms were
included as long as they involved no additional equations
or components that would fundamentally change the rep-
resentational structure (e.g., an upper layer in a hierarchi-
cal model).

5. Studies in which a reinforcement learning model of the
sort described above was refuted or outperformed by a
model from a different class (e.g., by a hidden-Markov
model, Kalman filter, hierarchical Bayesian model, or hy-
brid models with separate representational systems) were
excluded, to avoid the inclusion of maps derived from
potentially disadvantaged models.

6. Only studies reporting whole-brain results were includ-
ed.1 For studies reporting only region-of-interest or other-
wise restricted analyses, we contacted the authors to ob-
tain whole-brain coordinates and included the study if the
data were received.

7. We included only studies of nonclinical adult populations,
excluding rare genotypes, subclinical psychopathology,
and placebo-treated participants.

In total, we included in our ALE analyses 38 studies
reporting RPE maps and 16 studies reporting EV maps, with
751 and 337 participants, respectively. Of the EV studies, two
did not contribute RPE maps. The details of all included stud-
ies are listed in Tables 1, 2 and 3, and proportions of different
study designs are displayed in Fig. 2.

Subgroup analyses

Various subgroup analyses investigated heterogeneity across
our studies. We classified the studies into the following
categories:

& Pavlovian/instrumental: In Binstrumental^ paradigms,
outcome is contingent on a behavioral response (choice).
In BPavlovian^ paradigms, outcome is not contingent on
choice, although a response may be made—for example,
in order to signal outcome probability.

& Fixed/individual: A Bfixed^ learning rate is assumed to be
equivalent for all participants within the cohort. The learn-
ing rate may be estimated at the group level (e.g., Bernacer
et al., 2013) or by taking a reasonable heuristic (often
around 0.2; e.g., Kumar et al., 2008). Alternatively,
Bindividual^ learning rates are estimated separately for
each participant, and the PE and EV signals for each par-
ticipant reflect the individually estimated learning rate.

& Outcome PE/TD: Although a wide variety of algorithms
were used, we made a broad distinction between RW-like
trial-level models and TD-like algorithms. Put simply,
trial-level models have a single update mechanism at the
time of the outcome that forms the basis of the RPE,
whereas RPEs are computed at both the stimulus/action
and outcome phases of the task in TD algorithms.

& Monetary/liquid/cognitive/social: BMonetary^ and
Bliquid^ paradigms involved the respective reinforcers;
Bcognitive^ paradigms employed cognitive reinforce-
ment, such as numerical or symbolic feedback; and
Bsocial^ paradigms involved smiles, frowns, fearful, or
beautiful faces as reinforcement.

& High/low smoothing: BHigh^ studies employed a smooth-
ing kernel of 8 mm or more; Blow^ studies employed a
smoothing kernel of 7 mm or less.

Where there was a choice ofmaps to use from a given study
that fulfilled our criteria, we selected the one in which the
GLM regressor was estimated on the basis of the largest num-
ber of trials. For example, we included the overall social and
monetary RPE maps reported in the study of Fareri, Chang,
and Delgado (2012) for the main RPE analysis, but the social
RPE map only for all of the subgrouping analyses. Other
arbitrary choices included the decision to include the liquid
reinforcement map in Metereau and Dreher (2013), due to the
relatively low number of these studies. Finally, where slightly
different models were fitted to the data, the better-fitting or
otherwise preferred model was selected.

Activation likelihood estimation

Our statistical analysis of the studies was conducted using the
revised activation likelihood estimation (ALE) algorithm

1 A study by Wittmann and colleagues (Wittmann, Daw, Seymour, &
Dolan, 2008) was not included because their sequence was optimized
for ventral structures, and regions above the dorsal anterior cingulate were
not imaged. However, because this study could potentially have been
included given alternative criteria, we compared this RPE map with those
from the other studies. The RPE activations reported in this study were
highly comparable with those in similarly designed (fixed, instrumental,
monetary, TD) studies (e.g. putamen, visual cortex, thalamus, and oper-
cular activation).
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Table 1 Studies reporting reward prediction error (PE) maps, including
details about sample size (n) and number of foci, learning rule (US =
unconditioned stimulus, TD error = temporal difference error),

Pavlovian/instrumental design, learning rate parameter estimation (Fixed
= fixed at group level, Individual = individually estimated per partici-
pant), and reinforcer type

Study n Foci Learning Rule/ PE
Time Course

Pavlovian/
Instrumental

Learning Rate
Parameter

Reinforcer Type

Bellebaum, Jokisch, Gizewski, Forsting,
& Daum, 2012

15 52 Outcome PE Instrumental Individual Monetary

Bernacer et al., 2013 18 5 Outcome PE Instrumental Fixed Monetary

Bray & O’Doherty, 2007 28 6 Outcome PE Pavlovian Individual Social2

Brovelli, Laksiri, Nazarian, Meunier,
& Boussaoud, 2008

14 2 Outcome PE Instrumental Individual Cognitive

Chowdhury et al., 2013 32 35 Outcome PE Instrumental Individual Monetary

Dombrovski et al., 2013 20 16 Outcome PE Instrumental Individual Cognitive

Fareri et al., 2012 18 6 Outcome PE Instrumental Individual Monetary & Social (Social
only for subgroup analysis)

Gershman, Pesaran, & Daw, 2009 16 2 Outcome PE Instrumental Individual Monetary

Glascher, Hampton, & O’Doherty, 2009 20 10 Outcome PE Instrumental Individual Monetary

Gradin et al., 2011 17 16 Outcome PE Instrumental Fixed Liquid

Howard-Jones, Bogacz, Yoo, Leonards,
& Demetriou, 2010

16 20 Outcome PE Instrumental Individual Monetary

Jocham, Klein, & Ullsperger, 2011 16 13 Outcome PE Instrumental Individual Monetary

Jones et al., 2011 36 12 Outcome PE Instrumental Fixed Social

Kahnt et al., 2009 19 17 Outcome PE Instrumental Individual Social

Kim, Shimojo, & O’Doherty, 2006 16 4 TD error Instrumental Individual Monetary

Klein et al., 2007 12 4 Outcome PE Instrumental Individual Social

Kumar et al., 2008 18 7 TD error Pavlovian Fixed Liquid

Li, McClure, King-Casas, & Montague,
2006

46 5 Outcome PE3 Instrumental Individual Cognitive

Madlon-Kay, Pesaran, & Daw, 2013 20 8 Outcome PE Instrumental Individual Monetary

Metereau & Dreher, 2013 20 20 Outcome PE Pavlovian Individual Liquid4

Murray et al., 2008 12 17 Outcome PE Instrumental Fixed Monetary

Niv et al., 2012 16 5 TD error Instrumental Individual Monetary

O’Doherty et al., 2003 9 17 TD error5 Pavlovian Fixed Liquid

O’Sullivan, Szczepanowski, El-Deredy,
Mason, & Bentall, 2011

24 1 Outcome PE Instrumental Fixed Monetary

Park et al., 2010 16 33 Outcome PE Instrumental Individual Social

Robinson, Overstreet, Charney, Vytal,
& Grillon, 2013

24 7 Outcome PE Pavlovian Fixed Social

Rodriguez, 2009 14 5 Outcome PE Instrumental Fixed Cognitive

Rodriguez, Aron, & Poldrack, 2006 15 1 Outcome PE Instrumental Fixed Cognitive

Schlagenhauf et al., 2012 28 28 Outcome PE Instrumental Individual Social

Schonberg, Daw, Joel, & O’Doherty, 2007 29 14 TD error Instrumental Fixed Monetary

Schonberg et al., 2010 17 22 TD error Instrumental Individual Monetary

Seger, Peterson, Cincotta, Lopez-
Paniagua, & Anderson, 2010

11 16 Outcome PE Instrumental Individual Cognitive

Seymour et al., 2005 19 2 TD error Pavlovian Fixed Relief

Takemura et al., 2011 23 8 Outcome PE6 Pavlovian Fixed Liquid

Tanaka et al., 2006 18 2 Outcome PE Instrumental Individual Monetary7

Valentin & O’Doherty, 2009 17 37 Outcome PE Instrumental Fixed Monetary & Liquid

van den Bos, Cohen, Kahnt, & Crone, 2012 22 65 Outcome PE Instrumental Individual Cognitive

Watanabe, Sakagami, & Haruno, 2013 20 5 Outcome PE Instrumental Individual Monetary

2Opposite sex – Unattractive face; 3Matching shoulder → Rising optimum; logistic fitting map; 4Monetary also available; 5 Results are for PE@CS

inclusively masked with signed PE@UCS;
6 BWith^ model selected, including similarity parameter; 7 BRandom^ condition
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(Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012) for coordinate-
based analyses (Turkeltaub, Eden, Jones, & Zeffiro, 2002).
The method generates meta-analytic maps of consistent brain
activation locations from the coordinates derived from neuro-
imaging studies with similar experimental conditions. The
method provides an estimate of the convergence of foci across
activation maps, and determines the significance of these es-
timates via an empirically derived null distribution (Eickhoff
et al., 2012). The null hypothesis is that the foci are distributed
randomly across the brain, and the test statistic supports a
random-effects inference, that the modeled activation maps

reflect an above-chance convergence across studies
(Eickhoff et al., 2012; Turkeltaub et al., 2012). A de-
tailed description of the ALE technique can be found
elsewhere (Eickhoff et al., 2012; Turkeltaub et al.,
2012). In short, the activation foci reported for a given
experiment are treated as centers of a 3-D Gaussian
probability distribution, the width of which is empirical-
ly derived and reflects an estimate of the spatial uncer-
tainty of the foci of a given map and the sample size of
each experiment (Eickhoff et al., 2009). On the basis of
the ICBM tissue probability maps, each focus is given a
probability value of how likely the activation is to be
located at exactly that position. One modeled activation
map is then created for each experiment by merging the
probability distributions of all activation foci. If more
than one focus from a single experiment is jointly
influencing the modeled activation map, then the maxi-
mum probability associated with any one focus reported
by the given experiment is used. ALE scores are then
calculated by taking the union of these individual
modeled activation maps, and these scores reflect the
voxel-wise convergence of activations across experi-
ments. The p values of the ALE scores are determined
with reference to the null distribution. The resulting
nonparametric p values were transformed into z scores
and thresholded at a cluster-level family-wise error rate-
corrected threshold of p < .05 (cluster-forming threshold
at voxel-level p < .001).

Comparison of the different subgroups was performed by
subtracting the voxel-wise modeled activation maps from one
another, and then comparing this map to an empirically de-
rived null distribution of ALE-difference scores (10,000

Table 2 Studies reporting expected value (EV) maps

Study n Foci Pavlovian/ Instrumental Learning Rate Parameter Reinforcer Type

Bernacer et al., 2013 18 2 Instrumental Fixed Monetary

Chowdhury et al., 2013 32 100 Instrumental Individual Monetary

Dombrovski et al., 2013 20 4 Instrumental Individual Cognitive

FitzGerald, Friston, & Dolan, 2012 26 48 Instrumental Individual Monetary

Glascher et al., 2009 20 15 Instrumental Individual Monetary

Gradin et al., 2011 17 8 Instrumental Fixed Liquid

Jones et al., 2011 36 1 Instrumental Fixed Social

Kim et al., 2006 16 2 Instrumental Individual Monetary

Klein et al., 2007 12 8 Instrumental Individual Social

Madlon-Kay et al., 2013 20 6 Instrumental Individual Monetary

O’Sullivan et al., 2011 24 3 Instrumental Fixed Monetary

Seger et al., 2010 11 11 Instrumental Individual Cognitive

Takemura et al., 2011 23 24 Pavlovian Fixed Liquid

Tanaka et al., 2006 18 4 Instrumental Individual Monetary

Watanabe et al., 2013 20 2 Instrumental Individual Monetary

Wunderlich, Rangel, & O’Doherty, 2010 24 11 Instrumental Individual Monetary

Table 3 Overall numbers of participants and foci contributing to each
of the contrasts investigated

Studies Participants Foci

Reward PE 38 751 545

EV 16 337 249

Fixed 14 275 149

Individual 24 476 395

Instrumental 31 610 477

Pavlovian 7 141 67

RW 31 627 473

TD 7 124 71

Monetary 16 305 215

Liquid 5 87 68

Cognitive 7 142 110

Social 7 181 112

For the categories included in the subgroup analysis (BFixed^ and below),
only the studies and accompanying statistics that are included in the final
analyses are shown in the table
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permutations). To this end, ALE analyses were performed
separately on the experiments associated with either condition
and the voxel-wise differences were computed between the
ensuing ALE maps. All experiments contributing to either
analysis were then pooled and randomly divided into two
groups of the same size as the two original sets of experiments
defined by activation in the first or second cluster (Eickhoff
et al., 2011). The ALE scores for these two randomly assem-
bled groups were calculated, and the difference between these
ALE scores was recorded for each voxel in the brain.
Repeating this process 10,000 times yielded a null distribution
of differences in ALE scores between the ALE analyses of the
two clusters. The Btrue^ difference in ALE scores was then
tested against this null distribution, yielding a posterior prob-
ability that the true difference was not due to random noise in
an exchangeable set of labels based on the proportion of lower
differences in the random exchange. The resulting probability
values were then thresholded at p > .95 (i.e., 95% chance for a
true difference) and a cluster size (k) of 20.

Results

Reward prediction error

The activations revealed by the main categories were largely
in line with our hypotheses (Table 4, Figs. 3 and 4). The ALE
meta-analysis of the RPE maps revealed clusters
encompassing bilateral ventral striatum, bilateral amygdala,
midbrain, thalamus, frontal operculum, and insula. The largest
clusters were seen in the ventral striatum: one activation clus-
ter in each hemisphere that extended from the ventromedial

caudate (nucleus accumbens) to the lateral putamen and
amygdala (predominantly the superficial subregion). The left
frontal operculum cluster impinged on both the pars orbitalis
of the inferior frontal gyrus and the anterior insula. RPE-
related activation was also observed in the left visual cortex,
predominantly located in V3 and V4.

RPE: subgroup analysis

We performed a number of analyses focused on different sub-
categories of the RPE studies, in order to identify the distinct
activations associated with different designs. First, in order to
interpret these contrasts appropriately, we examined the ex-
tents to which the different categories of experimental designs
were statistically independent.

Confounding

Fisher’s exact tests between the subcategories assessed the
contingencies between design factors. There was a highly sig-
nificant association between reinforcer type and Pavlovian/
instrumental design (exact test = 14.67, p < .001). Monetary
reinforcers were more common in instrumental studies, and
liquid reinforcers were more common in Pavlovian studies.
Three other relationships showed trend-level associations (ps
between .061 and .088): fixed/individual versus Pavlovian/
instrumental, outcome PE/TD error versus reinforcer type,
and outcome PE/TD error versus Pavlovian/instrumental.

This confounding between Pavlovian designs, liquid
reinforcers, and TD modeling proved relevant, because
the activations associated with Pavlovian designs were
mostly collected from studies employing liquid

Fig. 2 Pie charts showing the percentages of studies in each condition that were included in producing the activation likelihood estimation (ALE) maps
for reward prediction error
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Table 4 ALE clusters representing reward prediction errors, including peak t statistics, Montreal Neurological Institute (MNI) coordinates, and cluster
sizes

Region t Statistic Coordinates Size Studies Participating (Percentage Contribution)

Left striatum (ventral putamen
and caudate), amygdala (SF)

6.66
5.39
3.50

–20 6 –12
–10 8 –6
–28 –6 –18

615 van den Bos et al., 2012 (10.23)
Gradin et al., 2011 (8.54)
Murray et al., 2008 (7.44)
Bellebaum et al., 2012 (6.58)
Kumar et al., 2008 (6.21)
Glascher et al., 2009 (6.20)
Metereau & Dreher, 2013 (5.86)
Madlon-Kay et al., 2013 (5.53)
Kahnt et al., 2009 (5.20)
Kim et al., 2006 (4.97)
Niv et al., 2012 (4.97)
Seger et al., 2010 (4.94)
Fareri et al., 2012 (4.85)
Tanaka et al., 2006 (4.45)
Howard-Jones et al., 2010 (3.22)
J. P. O’Doherty et al., 2003 (2.89)
Bray & O’Doherty, 2007 (2.26)
Klein et al., 2007 (2.00)
Seymour et al., 2005 (0.32)
Jones et al., 2011 (1.97)
Jocham et al., 2011 (0.21)
Li et al., 2006 (0.17)

Right striatum (ventral putamen
and caudate), amygdala (SF)

4.67
4.65
4.62
4.40
4.38
3.42

10 8 –10
26 –2 –12
16 8 –4
18 16 –6
14 6 –14
34 2 –12

463 Glascher et al., 2009 (8.89)
Metereau & Dreher, 2013 (8.73)
Kumar et al., 2008 (8.63)
van den Bos et al., 2012 (7.91)
Li et al., 2006 (7.79)
Seger et al., 2010 (7.36)
Madlon-Kay et al., 2013 (7.35)
Kahnt et al., 2009 (7.23)
Kim et al., 2006 (6.07)
Gradin et al., 2011 (6.06)
Watanabe et al., 2013 (5.77)
Klein et al., 2007 (4.63)
Murray et al., 2008 (3.35)
Howard-Jones et al., 2010 (2.24)
Fareri et al., 2012 (1.89)
Jones et al., 2011 (1.62)
Brovelli et al., 2008 (1.21)
Schonberg et al., 2007 (1.03)
J. P. O’Doherty et al., 2003 (0.78)
Park et al., 2010 (0.53)

Left insula, frontal operculum 6.14 –32 24 –8 201 Jones et al., 2011 (17.89)
Schlagenhauf et al., 2012 (13.23)
Jocham et al., 2011 (13.00)
Chowdhury et al., 2013 (12.74)
Kahnt et al., 2009 (12.39)
Park et al., 2010 (10.46)
Seger et al., 2010 (7.19)
Valentin & O’Doherty, 2009 (5.89)
Glascher et al., 2009 (2.09)
Robinson et al., 2013 (1.87)
J. P. O’Doherty et al., 2003 (1.55)
van den Bos et al., 2012 (0.26)
Murray et al., 2008 (0.18)

Midbrain, thalamus 5.63 –10 –20 –6 162 Murray et al., 2008 (15.24)
Bellebaum et al., 2012 (15.12)
Jocham et al., 2011 (14.75)
J. P. O’Doherty et al., 2003 (12.76)
Rodriguez, 2009 (11.69)
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reinforcement and also included a high contribution
from TD studies. There were relatively few TD studies,
but these employed either monetary or liquid rein-
forcers, and about half were Pavlovian designs. In gen-
eral, given the small number of such studies (Pavlovian/
TD/liquid) and the potential for confounding, the find-
ings from these maps should be interpreted cautiously.

Both the individual-related striatal and the fixed-related
midbrain activations were predominantly collected from in-
strumental rather than Pavlovian studies, as would be expect-
ed from the higher proportion of instrumental studies. The
striatal activations associated with individual studies were
elicited half by monetary and half by other reinforcers, where-
as the midbrain activation associated with fixed studies was
also represented by studies employing a variety of different
reinforcers.

Pavlovian versus instrumental (Table 5)

The instrumental RPE map was similar to the overall RPE
map, aside from the lack of midbrain activation. Striatal acti-
vations were slightly more medial than the overall RPE cluster
and did not extend as convincingly into the lateral striatum
(putamen), nor farther into the amygdala. In addition, the left
caudate was activated in this contrast. By contrast, the
Pavlovian studies yielded two clusters in the left putamen/
amygdala and right amygdala. The amygdala activations were
predominantly located in the superficial subregion.

Bilateral amygdala and left lateral putamen were significantly
more likely to be activated in Pavlovian than in instrumental
paradigms. The reverse contrast yielded a significant cluster in

the left caudate (anterior and dorsally located), as well as smaller
activations in more ventral regions of the medial striatum. A
small region reflecting the conjunction of instrumental and
Pavlovian tasks was apparent in the left putamen.

Fixed versus individual (Table 6)

The individual map was also similar to the overall RPEmap,
without the presence of the midbrain cluster or any activation
within the dorsal striatum. The striatal activations were focused
within the medial regions of the ventral striatum. By contrast, the
fixed map yielded two clusters: one in left putamen and one in
the midbrain. Statistical comparison of the contrasts yielded
greater activation in the bilateral ventral striatum (medially fo-
cused) for the individual contrast, as well as the left operculum
and left visual cortex. The fixed contrast yielded a large midbrain
cluster, as well as very small differences in the left lateral puta-
men. A cluster representing the conjunction of fixed and individ-
ual was present in the left putamen.

PE at outcome versus TD error (Table 7)

Studies that modeled PE only at the US made up a large
proportion of the data, and consequently the US PE map was
very similar to the overall RPE map. The seven TD error
studies yielded a cluster including the left lateral striatum
(putamen) and amygdala. A conjunction between the two
was again observed within the left putamen. The TD error
studies showed activated left amygdala/hippocampus more
than did the US PE studies, whereas the latter showed greater
activation in the left caudate and left frontal operculum.

Table 4 (continued)

Region t Statistic Coordinates Size Studies Participating (Percentage Contribution)

Valentin & O’Doherty, 2009 (11.20)
Jones et al., 2011 (9.19)
Kumar et al., 2008 (4.68)
Park et al., 2010 (1.63)
Seymour et al., 2005 (1.21)
Gradin et al., 2011 (1.15)
Schlagenhauf et al., 2012 (0.44)

Left fusiform, lingual, inferior
occipital gyrus (V3, V4)

4.08
4.05
3.87
3.18

–22 –82 –18
–34 –84 –8
–24 –88 –16
–24 –82 –8

147 Chowdhury et al., 2013 (23.64)
van den Bos et al., 2012 (17.92)
Bellebaum et al., 2012 (13.15)
Schonberg et al., 2010 (11.75)
Gradin et al., 2011 (9.43)
Madlon-Kay et al., 2013 (8.96)
Howard-Jones et al., 2010 (7.83)
O’Sullivan et al., 2011 (6.48)
Metereau & Dreher, 2013 (5.80)
Gershman et al., 2009 (2.57)
Murray et al., 2008 (0.98)

The studies contributing to each cluster and the extent of their contribution (as a percentage) to the overall cluster are marked. SF = superficial subregion
of amygdala

Cogn Affect Behav Neurosci



Reinforcer type (Table 8)

As with the outcome PE map, monetary reinforcement oc-
curred frequently in the selection of studies. Thus, the monetary

subanalysis revealed a pattern of activations very similar to the
overall RPE contrast. The other reinforcer-type subanalyses were
somewhat underpowered, and we did not perform statistical con-
trasts of thesemaps. The cognitive subanalysis did not reveal any

Fig. 3 Map of significant ALE clusters associated with the reward prediction error contrast, with activations in the striatum circled. Pie charts show the
contributions of the studies of a particular class to the bilateral striatum activation. Percentages are not corrected for base rate

Fig. 4 Map of significant ALE clusters associated with the reward prediction error contrast, with activations in the midbrain and frontal operculum
circled. Pie charts show the contributions of the studies of a particular class to each activation. Percentages are not corrected for base rate
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significant clusters, but the liquid and social reinforcement maps
yielded several distinct clusters. Liquid rewards elicited lateral
putamen and amygdala activations, whereas social rewards pro-
duced two left hemispheric activations: One was similar to the
frontal opercular/insula cluster in the main reward PE contrast;
the second was in the left inferior parietal cortex.

High versus low smoothing (Table 9)

High-smoothing studies were associated with bilateral puta-
men and amygdala activation, as well as activation in the left
frontal operculum. Low-smoothing studies were associated with
the thalamus/midbrain and left frontal operculum. The opercular
activations were not similar enough to yield a significant con-
junction. High-smoothing studies were significantly more likely
to activate the right amygdala than were low-smoothing studies.
The low-smoothing studies were more likely to activate a small
cluster of the thalamus, toward the top of the midbrain/thalamus
cluster identified in the main RPE contrast.

Overall conjunction

A conjunction analysis was conducted across all of the main
contrast types (Pavlovian/instrumental, fixed/individual, RW/
TD, high/low smoothing) using the minimum statistic across
the cluster-thresholded contrasts for each of the eight maps
(Rottschy et al., 2012). A 30-voxel cluster was revealed in
the left putamen (–22, 6, 9) across the first three pairs of
contrasts (i.e., excluding smoothing). This cluster thus reflects
the strongest convergent evidence for a neural correlate of a
signed RPE signal that we were able to obtain (see Fig. 5).
However, when the smoothing-related contrasts were includ-
ed, no clusters were identified.

Expected value (Table 10)

The ALE analysis of studies reporting EVyielded a single
activation in the subgenual anterior cingulate cortex (ACC;
Table 10, Fig. 6). To illustrate specificity, the RPE and EV
maps were contrasted. The subgenual ACC was significantly
more likely to be activated in the EV than in the RPE

Table 5 ALE clusters representing instrumental (Instr) and Pavlovian
(Pav) activations, including peak t statistics, MNI coordinates, and cluster
sizes

Region t Statistic Coordinates Size

Instrumental

Left putamen
Left ventral caudate
Left dorsal caudate (head)

5.96
5.46
4.64

–16 6 –12
–10 8 –6
–12 8 8

597

Right ventral striatum 4.78
4.52
3.37

14 6 –14
18 16 –6
6 18 –4

397

Left frontal operculum 6.32 –32 24 –8 233

Left fusiform gyrus (V4), inferior
occipital, lingual gyrus

4.21
4.17
3.93

–22 –82 –18
–34 –84 –8
–24 –88 –16

162

Pavlovian

Left putamen/amygdala (SF) 5.18
4.06

–24 4 –10
–20 0 –22

194

Right amygdala (SF) 5.16
3.71
3.66

26 –2 –12
36 0 –10
38 –2 –8

136

Pav/Instr Conjunction: Left
putamen

4.77 –22 6 –12 50

Instr > Pav: Left caudate 2.98
2.95
2.34

–10 8 10
–8 4 10
–10 4 16

58

Instr > Pav: Left pallidum 1.93
1.86
1.74

–12 4 –2
–8 2 –4
–6 4 –2

29

Pav > Instr: Right amygdala (SF/LB) 2.89
2.49

24 –8 –8
34 –2 –12

112

Pav > Instr: Left putamen, left
amygdala (SF)

2.69 –28 2 –10 82

Pav > Instr: Left amygdala
(SF/LB), left hippocampus (EC)

2.35 –22 2 –20 50

SF = superficial subregion of amygdala; LB = laterobasal subregion of
amygdala; EC = entorhinal cortex

Table 6 ALE clusters representing individual (Ind) and fixed activa-
tions, including peak t statistics, MNI coordinates, and cluster sizes

Region t Statistic Coordinates Size

Individual

Left ventral striatum 6.13
5.14

–18 4 –12
–10 10 –6

441

Right ventral striatum 4.78
4.64
4.25
3.88
3.54

18 8 –4
14 6 –16
10 8 –10
24 0 –12
6 18 –4

415

Left fusiform gyrus (V4), inferior
occipital, lingual gyrus

4.38
4.06
3.96
3.72
3.47

–34 –84 –8
–24 –88 –16
–24 –84 –18
–26 –88 –8
–24 –82 –8

217

Left frontal operculum 6.20 –30 24 –8 166

Fixed

Midbrain/thalamus 5.44
3.65

–8 –22 –6
6 –16 –10

278

Left putamen (lateral) 4.57 –24 6 –8 111

Fixed/Ind Conjunction: Left putamen 4.21 –24 6 –10 51

Ind > Fixed: Left inferior occipital,
fusiform gyrus (V4)

2.80
2.77
2.60
2.23

–34 –80 –8
–36 –80 –12
–24 –80 –6
–28 –88 –8

119

Ind > Fixed: Left ventral striatum 2.44
2.35

–12 6 –10
–10 10 12

113

Ind > Fixed: Right ventral striatum 2.50 20 8 –8 53

Ind > Fixed: Left frontal operculum 2.09
2.00

–26 28 –4
–28 24 –6

40

Fixed > Ind: Midbrain/thalamus 2.62
2.47
2.46

–4 –24 –4
–2 –12 –10
–10 –26 –6

151
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condition, whereas the left striatum and midbrain were signif-
icantly more likely to be activated in the RPE than in the EV
condition. No significant clusters representing the conjunction
of EV and RPE were observed.

Discussion

In line with previous animal and human studies, the present
meta-analysis confirmed our core hypotheses: that the mid-
brain and striatum represented reward prediction errors,
whereas the subgenual cingulate—a caudal region of the
vmPFC—represents expected value. In addition, this meta-
analysis revealed that the frontal operculum and visual corti-
ces are part of the RPE network, mainly recruited during so-
cial rewards and attentional processing, respectively.
Although these results are largely compatible with previous
meta-analyses of the neural bases of PEs (Garrison et al.,
2013), reward anticipation and receipt (Diekhof, Kaps,

Table 7 ALE clusters representing temporal difference (TD) error and
prediction error (PE) at outcome activations, including peak t statistics,
MNI coordinates, and cluster sizes

Region t Statistic Coordinate Size

TD error

Left putamen, amygdala (SF/LB),
hippocampus

5.12
4.31
4.20
3.69

–16 6 –14
–24 6 –10
–20 0 –22
–28 –8 30

270

PE at outcome

Left ventral striatum 5.45
5.21
4.62

–10 8 –6
–20 6 –12
–12 8 8

566

Right ventral striatum 4.59
4.52
4.35
3.44

18 8 –4
18 16 –6
10 8 –10
6 18 –4

365

Midbrain/thalamus 5.10 –8 –20 –6 115

Left frontal operculum 6.28 –32 24 –8 240

PE at outcome only/TD error
conjunction: Left putamen

4.74
4.31

–18 6 –12
–24 6 –10

112

TD error > Outcome PE: Left Amygdala
(SF, LB), hippocampus (EC)

3.95
3.26
2.64

–18 2 –24
–18 0 –28
–16 –6 –30

127

Outcome PE > TD error: Left caudate 3.30
2.97
2.95
2.51
1.93

–10 10 6
–8 4 10
–10 8 10
–10 8 14
–8 10 0

126

Outcome PE > TD error: Left frontal
operculum, inferior frontal gyrus, pars
orbitalis

2.47
2.01
1.98
1.97
1.77

–40 34 –10
–34 32 –12
–34 32 –8
–36 36 –12
–38 26 –12

64

SF = superficial subregion of amygdala; LB = laterobasal subregion of
amygdala; EC = entorhinal cortex

Table 8 ALE clusters representing the activations associated with
different reinforcers, including peak t statistics, MNI coordinates, and
cluster sizes

Region t Statistic Coordinate Size

Monetary

Left ventral striatum 6.07 –18 6 –14 278

Left inferior occipital, lingual
gyrus (V4)

4.87
4.24
3.25

–34 –84 –8
–24 –86 –16
–26 –98 –12

215

Right ventral striatum 4.35
3.99
3.311

10 10 –10
16 6 –14
18 16 –6

278

Liquid

Left putamen/amygdala (SF, LB) 5.76
4.37

–24 4 –10
–28 –2 –14

260

Right amygdala (SF, LB, CM) 5.30
3.71
3.43

26 –2 –12
38 –2 –8
32 –14 –14

154

Social

Left frontal operculum/IFG 5.74 –30 24 –10 234

Left inferior parietal lobule (hIP1,
inferior parietal cortex (PGa, PFm)

4.25
3.92

–40 –54 42
–50 –56 42

123

Cognitive

No regions

SF = superficial subregion of amygdala; LB = laterobasal subregion of
amygdala; CM = centromedial subregion of amygdala; EC = entorhinal
cortex

Table 9 ALE clusters representing activations associated with high and
low smoothing kernels, including peak t statistics, MNI coordinates, and
cluster sizes

Region t Statistic Coordinate Size

High Smoothing

Left putamen, amygdala 6.40
3.61

–20 6 –12
–28 –4 –16

524

Right putamen, amygdala 4.78
4.66
4.11
3.55
3.11

26 –2 –12
14 6 –14
20 10 –4
34 2 –12
6 4 4

430

Left frontal operculum 5.55 –30 24 –8 137

Low Smoothing

Thalamus/midbrain 4.81 –8 –18 –2 112

Left inferior frontal gyrus
(pars orbitalis), frontal operculum

4.13
4.07
3.85

–34 28 –12
–36 22 –6
–30 28 –14

109

High/Low Smoothing Conjunction – – –

High > Low: Right amygdala (SF) 2.44
1.99
1.97

24 –2 –14
14 0 –16
16 2 –14

57

Low > High:
Left thalamus

2.09 –6 –18 –2 46

SF = superficial subregion of amygdala.
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Falkai, & Gruber, 2012; Liu, Hairston, Schrier, & Fan, 2011;
Sescousse et al., 2013), and value (Bartra et al., 2013; Clithero
& Rangel, 2014; Levy & Glimcher, 2012; Peters & Buchel,
2010), the present study extends this work by focusing exclu-
sively on the neural correlates of parametric RPEs and EV
derived from reinforcement learning models. We identified
methodological factors that might have contributed to the di-
vergent findings, including Pavlovian/instrumental designs,
reinforcer type, and smoothing kernel size.

Core PE network

The reproducibility of fMRI BOLD images is often a concern,
with test–retest reliability of the method being generally mod-
est, and very poor in some cases (Bennett & Miller, 2010).

Moreover, methodological differences across studies, includ-
ing differences between scanners, paradigms, participants, and
analysis software may further conspire to amplify between-
study heterogeneity. Nevertheless, a core network of regions
associated with PEs was readily identified, including the ven-
tral striatum and midbrain, as predicted. Indeed, even for two
regions that were not predicted—the left frontal operculum
and left visual cortex—over ten studies contributed to each
of these clusters. This suggests that this core PE network is
robust to between-study variability and reflects a level of spec-
ificity of the activations. However, each of the activations
should be interpreted carefully; it is often difficult to distin-
guish certain psychological events, due to a shared but spuri-
ous correlation with the general linear model regressor. The
variability of paradigms may act to provide some

Fig. 5 Conjunction map showing
overlap of the ALE maps from
individual subgroup analyses
(fixed, individual, Pavlovian,
instrumental, outcome PE, TD,
monetary, liquid, and social), with
the left putamen cluster (x = –22,
y = 6, z = 9, cluster size = 30) from
the conjunction analysis marked
with arrows

Table 10 ALE cluster representing the activation associated with expected value (EV), including peak t statistics, MNI coordinates, and cluster sizes

Region t Statistic Coordinate Size Studies Participating
(Percentage Contribution)

Subgenual cingulate 4.85
3.54

4 34 –6
–6 28 –20

172 FitzGerald et al., 2012 (26.52)
Wunderlich et al., 2010 (24.44)
Glascher et al., 2009 (21.24)
Bernacer et al., 2013 (13.99)
Kim et al., 2006 (9.83)
Klein et al., 2007 (2.80)
Takemura et al., 2011 (0.69)

The studies contribution to the cluster, and their percentage contributions, are marked
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decorrelation of irrelevant variables from the RPE construct.
For example, the lack of PE signals in the medial PFC is
consistent with animal electrophysiological studies (Roesch
et al., 2010), although medial OFC activation has been shown
to be coupled to RPE in some human fMRI studies. Our find-
ings are consistent with the view that this is likely to be due to
the correlation inherent between appetitive properties of the
outcome and RPE in many of these designs (Erdeniz, Rohe,
Done, & Seidler, 2013; Rohe et al., 2012).

Aside from the reinforcement learning signal hypotheti-
cally encoded by dopamine-rich regions such as the midbrain
and ventral striatum, associative learning algorithms are of-
ten extended to account for salience and attentional phenom-
ena. These constructs may be necessary for interpreting RPE
correlates in the visual cortex, amygdala, and insula. For
example, the Pearce–Hall (PH) model (Pearce & Hall,
1980) emphasizes that the cues associated with surprising
outcomes command attention: PEs not only strengthen asso-
ciations, but a similar signal, reflecting surprise associated
with the outcome, may control the rate at which such asso-
ciations are strengthened. In the PH model, stimuli that are
accompanied by larger PEs attract attention, and thus be-
come more readily associated with other stimuli. A recent
theme has been to argue that a PH signal might be coupled
to the surprising outcome itself, rather than to condi-
tioned stimuli. For example, a recent study by Li,
Schiller, Schoenbaum, Phelps, and Daw (2011) sug-
gested that, consistent with animal learning studies

(Maddux, Kerfoot, Chatterjee, & Holland, 2007), the
amygdala codes surprise, as predicted by the PH model,
rather than a signed RPE signal.

In the present study, we found amygdala activation
coupled to the RPE contrast. In the probabilistic designs that
are widely used, it would be difficult to dissociate a PH
signal from the basic RPE contrast. It may then be that
RPE-coupled amygdala activation reflects some confounding
of a PH signal with the RPE signal, particularly because a
PH parameter is often not concurrently modeled. However,
amygdala activation was particularly associated with studies
in which liquid was used as a reinforcer, whereas larger
smoothing kernels were also associated with greater activa-
tion in the amygdala. These factors should be independent of
the learning rule and contingency under investigation, and
should be adequately controlled in future studies of the PH
rule.

Other regions that have played a well-established role in
attention in the fMRI literature were also coupled to the RPE
contrast, including the left visual cortex. Although reward-
related responses in the visual cortex have been identified, a
recent study argued that these signals may reflect attentional
processing rather than the appetitive and dopamine-related
properties of the reward (Arsenault, Nelissen, Jarraya, &
Vanduffel, 2013). With the RPE contrast, we also identified
a left frontal operculum/anterior insula region that is activated
by a wide range of stimuli and task designs, and thus perhaps
has a general role in task set representation (Dosenbach et al.,

Fig. 6 Map of significant ALE
clusters associated with the
estimated value contrast. Pie
charts show the contributions of
the studies of a particular class to
the subgenual cingulate
activation. Percentages are not
corrected for base rate
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2006). Nevertheless, the activation of this region by reward
has been quite well characterized. A study by Rutledge, Dean,
Caplin, and Glimcher (2010) parametrically manipulated the
reward probabilities of wins and losses, finding that the re-
sponse of the anterior insula to reward did not follow a pattern
that would be expected from a PE signal. It was, however,
modulated to some degree by the probability of the outcome,
insofar as activation was not observed in the region if the
outcome was fully predicted, and showed fairly consistent
activation across wins and losses if the outcome was uncer-
tain. Given that the paradigms in the present study have gen-
erally included a degree of outcome uncertainty, this opens the
possibility that anterior insula activation may become coupled
with an RPE regressor, while not accurately reflecting the
predicted RPE signal. Less obvious is the fact that paradigms
employing social reinforcement were particularly able to elicit
activation in this region. An interpretation of the Rutledge
et al. study might suggest that this is simply related to the kind
of contingencies employed in the social paradigms, but equal-
ly it is worth considering the possibility that the anterior insula
may play a distinct role in the reinforcement process itself.

Pavlovian versus instrumental

Although the majority of studies have been instrumental, re-
quiring participants to make a choice, we contrasted these
studies with a small number of Pavlovian designs. We found
differential activation in the left caudate (dorsal striatum), con-
sistent with an influential study by O’Doherty and colleagues
(2004) in which the striatum was argued to follow the Bactor–
critic^ model: the anterior, dorsal caudate (Bactor^) was en-
gaged when behavior output was required. By contrast, the
ventral striatum (Bcritic^) was engaged during errors of value
prediction, whether or not a response was required to obtain
reward. This distinction is also broadly consistent with animal
lesion studies, since the dorsomedial striatum of rodents—a
likely homologue of the caudate region identified in the pres-
ent study and that of O’Doherty et al. (2004)—plays a key role
in instrumental, goal-directed behavior (Yin, Ostlund,
Knowlton, & Balleine, 2005), whereas the ventral striatum is
more consistently implicated in Pavlovian behaviors (Corbit
& Balleine, 2011; Parkinson, Olmstead, Burns, Robbins, &
Everitt, 1999).

Although the notion that the striatum contributes to action
selection in a manner predicted by the actor–critic model has
steadily gathered currency, it was somewhat undermined by a
previous meta-analysis by Garrison and colleagues (2013).
This study showed that, although both the dorsal and ventral
striatum were engaged by instrumental designs, both were
significantly more activated by these designs than by
Pavlovian designs. Our findings contrast with that study, since
we did find significant activation in the ventral striatum elic-
ited by Pavlovian designs, although it was somewhat more

lateral than the equivalent activations seen in instrumental
designs.

Together, the present study and that of Garrison et al.
(2013) may provoke further debate about the success of the
actor–critic model as an account of the striatum’s influence on
behavior. However, there are several important reasons why
providing a definitive contribution to this question might be
difficult. First, it has been noted (e.g., Coricelli et al., 2005;
Yeung, Holroyd, & Cohen, 2005) that designs in which a
(human) participant is required to make a choice, and is rein-
forced for doing so, are potentially more engaging than
Pavlovian designs, and consequently can provide more robust
neural signals. Given that the magnetic resonance scanner
requires that an individual lie for long periods in a darkened
room, performing an often repetitive task, this consideration is
not to be taken lightly, and can make it difficult to design an
effective Pavlovian paradigm. This may explain both the pre-
ponderance of instrumental tasks in the literature and the sec-
ond key limitation—that Pavlovian designs tend to focus on
liquid reinforcers rather than other domains. This is presum-
ably because liquid is a powerful primary reinforcer, particu-
larly when the participant is thirsty (e.g., Kumar et al., 2008),
and this may somewhat compensate for the potential lack of
engagement described above. A final limitation is the nature
of the definition of instrumental and Pavlovian designs.
Instrumental behavior can be defined on the basis of the con-
tingency between a particular action and an outcome (Balleine
& Dickinson, 1998), and the manner in which a participant
can use this information to obtain reinforcement. The presence
of stimuli in all of the paradigms that we considered in the
present work complicates this issue somewhat. Specifically, in
any of the instrumental designs included in the present work, it
cannot be assumed that this action–outcome contingency was
the sole factor that determined choice. Rather, an individual’s
responses may also have been susceptible to influence by the
presented stimuli and by the relationships between the stimuli
and reinforcement.

Fixed versus individual learning rates

We investigated whether the strategy of reinforcement learn-
ing model fitting, upon which the pattern of the RPE (and EV)
regressors was based, was associated with different patterns of
neural activation. Although across most situations the patterns
of RPEs associated with fixed and individual model fitting
should be highly similar, it is nevertheless unclear exactly
how sensitive the pattern of activations is to the
parameterization of the underlying model. Daw (2011) has
consistently argued that the fixed (or, more particularly, group
fixed) strategy offers advantages over estimating the model
parameters per individual. On the other hand, regarding the
fitting of models to behavioral data, Estes and Maddox (2005)
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have argued that individual-participant fitting avoids certain
sources of bias associated with group averaging.

The fixed subgroup showed the strongest corroboration of
the classic RPE hypothesis pioneered by Schultz and col-
leagues (Schultz et al., 1997), since the midbrain was engaged
in these studies. In addition, activation in the lateral putamen
was also observed, as would be expected on the basis of ana-
tomical connectivity (Haber et al., 2000). However, if the
individual method was suboptimal, we would not expect the
method to have obtained traction in the literature—individual
studies being more common than fixed ones—and more im-
portantly, we would not expect a distinct pattern of activations
to emerge. It is possible to imagine various scenarios in which
the presence of suboptimal acquisition or preprocessing pa-
rameters that impair the detection of midbrain activations
would sustain the observation of a certain pattern of weaker
ventral striatal RPE-associated responses beyond the canoni-
cal network, but even then, the focus of the activation should
not show such a reproducibly medial focus within the stria-
tum. It also does not seem likely that a suboptimal RPE re-
gressor would be better coupled to an experimental confound,
such as the response to the reward itself (Rohe et al., 2012).
Within the reinforcement learning framework we have set out,
the most likely remaining explanation is that the neural re-
sponses to RPEs generated by different learning rates are
reflected across different regions of the brain (Glascher &
Buchel, 2005). For example, a model by M. J. Frank,
Moustafa, Haughey, Curran, and Hutchison (2007) distin-
guished a rapid but time-dependent learning mechanism, as-
cribed to the OFC, and a slower, incremental learning mech-
anism, ascribed to the striatum. Both mechanisms used similar
RW-based learning rules, although more recent, comparable
models have employed a working-memory-based system
rather than a rapid reinforcement learning system (Collins &
Frank, 2012). This might, therefore, provide one interpretation
of our data, with the modification that the medial striatum
encodes a more variable learning rate (across individuals),
perhaps better linked to trial-by-trial choice performance,
whereas the midbrain and lateral putamen reflect a more ho-
mogeneous, slower learning rate that is not as strongly
reflected in behavior.

Conjunction analyses

A further level of specificity is afforded by the conjunction
analysis examining which regions have been identified across
different designs, and thus are relatively invariant. Across sev-
eral of the subgroup analyses (i.e., fixed/individual,
Pavlovian/instrumental, and RW/TD), the left putamen was
identified. The region was notable insofar as it was positioned
at the midpoint between the classic ventromedial striatal re-
gion, which may correspond to the nucleus accumbens in
humans (Haber & Knutson, 2010), and a more clearly

lateralized putamen region. Given that these two regions
may be anatomically distinct (Haber et al., 2000), it is impor-
tant to consider the extent to which smoothing may have
played a part in this finding. The smoothing of individual
participant images is considered to be an important prepro-
cessing step: Though not without drawbacks, the method is
thought to enhance statistical power, by increasing the ratio of
signal to noise (Yue, Loh, & Lindquist, 2010), and increases
the underlying smoothness for Gaussian random field-based
(cluster) analyses (Hayasaka & Nichols, 2003). It is intriguing
that one subgrouping analysis that did not yield activation in
this region was the conjunction of studies that used high and
low smoothing kernels. In a recent study, Sacchet and
Knutson (2013) demonstrated that larger smoothing kernels
can influence the localization of peak activation within the
ventral striatum, with larger kernels yielding more posterior
activations. In our study, the variability in the magnitudes of
smoothing kernels across studies was relatively small, with
the large majority of studies choosing an 8-mm kernel, and
no significant differences between the low/high smoothing
subgroups were seen. However, it was also notable that stud-
ies using a small smoothing kernel were (nonsignificantly)
more capable of revealing midbrain activation. Given that
the midbrain is a small structure, matched filter theory (for
fMRI, see Yue et al., 2010) would predict that a smaller filter
should therefore be advantageous to identify activation in this
region. Overall, as was suggested by Sacchet and Knutson,
differences in smoothing across studies may provide signifi-
cant additional heterogeneity, and alternative smoothing
methods that honor the geometry and sizes of these regions
may be valuable in future studies.

Core expected value network

Our meta-analysis of reinforcement learning studies of EV
identified a subregion of the subgenual cingulate cortex, cor-
responding most closely to areas 25 and 32 of the human and
monkey vmPFC. This phylogenetically ancient agranular re-
gion is likely homologous to the paralimbic and infralimbic
cortex of rodents (Wallis, 2012).

At the first approximation, our findings converge with pri-
mate electrophysiological (Kennerley et al., 2009; Kennerley
& Wallis, 2009a, 2009b; Morrison & Salzman, 2009; Padoa-
Schioppa &Assad, 2006, 2008; Roesch &Olson, 2004, 2005;
Wallis &Miller, 2003) and lesion (Izquierdo, Suda, &Murray,
2004; Noonan et al., 2010; Rudebeck & Murray, 2011) stud-
ies, as well as rodent lesion studies (Gallagher, McMahan, &
Schoenbaum, 1999; McDannald, Lucantonio, Burke, Niv, &
Schoenbaum, 2011; Takahashi et al., 2009), implicating the
OFC in value computations. Yet, the substantial anatomical
heterogeneity between these literatures cannot be ignored.
Most primate electrophysiological studies have recorded val-
ue signals from more rostral, central orbitofrontal regions
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(BAs 11 and 13). Rodent studies have often employed lesions
of the more rostral and lateral OFC (Gallagher et al., 1999;
McDannald et al., 2011; Takahashi et al., 2009). In contrast,
our subgenual cingulate cluster is more medial and caudal and
does not extend to the orbital surface. This discrepancy was
recently discussed by Wallis (2012), who pointed out a few
possible solutions to this puzzle. First, rostromedial OFC
BOLD activations in BA 11, medial BA 13, and ventral BA
10 are obscured by the susceptibility artifact. Thus, value sig-
nals in the human brain may well extend into the rostral and
central OFC areas highlighted by primate physiological stud-
ies. However, a recent meta-analysis of fMRI studies of re-
ward value that was not limited to reinforcement learning
studies, by Bartra and colleagues (2013), reported value-
related activations in the medial rostral OFC areas most affect-
ed by the susceptibility artifact, but not in the more lateral
central OFC, in which signal is often better preserved.

Another set of considerations stems from the medial–lateral
organization of the orbitofrontal circuits (Ongur & Price, 2000).
The lateral, Borbital^ circuit of Carmichael and Price (1996) en-
compasses central OFC areas, which integrate sensory inputs
carrying information about extrinsic food values: taste, olfaction,
and vision. It is often argued that this lateral circuit represents not
only the values of foods and liquids typically used in animal
experiments, but those of external stimuli and outcomes in gen-
eral (Schoenbaum, Takahashi, Liu, &McDannald, 2011; Wallis,
2012). Physiologists have typically recorded from this circuit in
their studies of primate and rodent OFC (Kennerley et al., 2009;
Kennerley &Wallis, 2009a, 2009b; Morrison & Salzman, 2009;
Padoa-Schioppa & Assad, 2006, 2008; Roesch & Olson, 2004,
2005; Wallis & Miller, 2003).

An additional reason why fMRI studies may have not detect-
ed value signals in central OFC is its diametrically opposed
value-encoding scheme (Wallis, 2012): Some OFC neurons in-
crease and others decrease their firing rates in response to increas-
ing value (Kennerley & Wallis, 2009a; Morrison & Salzman,
2009; Padoa-Schioppa & Assad, 2006). These opposing re-
sponses may cancel each other out at the level of the BOLD
signal. The medial orbital circuit, encompassing the vmPFC
and the subgenual cingulate in particular, has prominent visceral
and motor connections (Carmichael & Price, 1996; Ongur &
Price, 2000). Its putative functions include sensing internal states,
tracking social value, and bridging outcome value and action
selection (Bouret & Richmond, 2010; Noonan et al., 2010;
Rudebeck et al., 2008; Rudebeck, Buckley, Walton, &
Rushworth, 2006). Grabenhorst and Rolls (2011) have placed
the vmPFC downstream from the OFC in the processing of
reward signals, proposing that the vmPFC receives stimulus val-
ue information from the OFC, incorporates other variables such
as cost into the decision, and transmits it to motor areas. VmPFC
responses often scale with subjective pleasure, which may best
correspond to the reward rate or the total value of the contingen-
cies that can be exploited.

Not only are the findings of vmPFC value signals consistent
in human fMRI studies, but they are also less well established in
the primate electrophysiological literature (Wallis, 2012; but see
Strait, Blanchard, & Hayden, 2014). This discrepancy may re-
flectmethodological differences between the human andmonkey
studies. For example, human studies havemostly used secondary
reinforcers such as money and correct/incorrect feedback. Only
2/16 value studies in our meta-analysis used primary rewards
(liquid). One of them detected value signals in the vmPFC
(Takemura, Samejima, Vogels, Sakagami, & Okuda, 2011),
and one did not (Gradin et al., 2011), and neither found value
signals in the central OFC. Furthermore, the meta-analysis by
Bartra and colleagues (2013) reported vmPFC value signals for
both primary and monetary rewards. A similar explanation fo-
cuses on the putative predilection of the vmPFC for social value
signals (Rudebeck et al., 2006). The presence of vmPFC value
signals in fMRI studies that have used primary, nonsocial re-
wards argues against this explanation. That said, demand char-
acteristics may be a confound in human imaging studies of value
signals, and experimentersmay thus need to conceal contingency
manipulations. In summary, our finding of reinforcement-
learning-estimated value signals in the vmPFC/subgenual cingu-
late is consistent with non-reinforcement-learning-based human
imaging studies and diverges somewhat from the primate elec-
trophysiological studies, which have tended to find value signals
in the central OFC.

Given that the EV map was restricted to the vmPFC, a sup-
plementary conjunction analysis of the RPE andEVcontrasts did
not reveal significant results. Given that the EV maps reflect
future expected rewards, it is plausible that a TD-related signal
should be observed at this stage, and thus a concurrent striatal or
midbrain activation. In fact, significantly different activations
were observed between the RPE network (RPE > EV) and the
vmPFC EV cluster (EV > RPE). A statistical account of this
observation may relate to the combined inclusion of RPE and
EV regressors in the general linear model used in the analysis of
many of the studies: The presence of each regressor concurrently,
combined with a suitable design, may act to orthogonalize these
two events and distinguish the resulting maps. Nevertheless, our
findings are also consistent with the view that a phasic TD signal
might be distinct (in this case, neuroanatomically) from an EV
signal (Ludvig, Sutton, & Kehoe, 2008).

Limitations

Although striking consistency in the patterns of activation was
observed across paradigms, there was nevertheless evidence of
different classes of paradigms leading to different patterns of
findings, as we discussed. A limitation of the inferences that
can be drawn from analyses of these differences was caused by
the presence of confounds between different categories. This was
particularly acute for Pavlovian–TD–liquid designs, because of
their relative infrequency. In particular, amygdala RPE-coupled
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activations were associated with these classes of designs, making
it difficult to draw strong conclusions about the amygdala’s en-
gagement by a paradigm class. Overall, our method of contrast-
ing paradigm classes required that all other dimensions be con-
trolled for strong inferences to be obtained.Although this was not
possible, the findings nevertheless point to particular
trends of experimental design that may precipitate dif-
ferences in the patterns of neural activation obtained.

Refutations or refinements of reinforcement learning
models are of course a crucial part of their theoretical devel-
opment within neuroscientific investigation (Gamez, 2012).
However, we have restricted our analysis to studies in which
the reinforcement learningmodel was not refuted or otherwise
argued to be an inferior account of the pattern of data, albeit
we did allow for some modifications of parameterization to
the basic RW or TD model. Bayesian models such as the
Bayesian learner (Behrens, Woolrich, Walton, & Rushworth,
2007), hidden-Markov models (Hampton, Bossaerts, &
O’Doherty, 2006), and Bayesian reinforcement learning
(Mathys, Daunizeau, Friston, & Stephan, 2011), as well as
the Kalman filter (Daw, O’Doherty, Dayan, Seymour, &
Dolan, 2006), can all exhibit advantages over many of the
models we have examined in the present work. However,
the superior performance of the alternative models in the stud-
ies that we opted to exclude may have been a result of pecu-
liarities of the experimental designs, which might render these
studies more heterogeneous a priori, and thus less suitable for
meta-analysis. In addition, the nature of this advantage should
be carefully qualified (Myung, 2000): Often, these models are
representationally more powerful, perhaps reflecting inherent
features of the experimental design (e.g., the rule transitions
embedded within reversal learning: Behrens et al., 2007;
Hampton et al., 2006). Although pursuing the benefits of these
models is likely to be a topic of major ongoing interest, we
argue that the incremental increase in complexity and repre-
sentational capacity of many of these models creates a natural,
qualitative distinction from the more traditional reinforcement
learning methods that provided the focus of the present work.

Another limitation of the present study involves the limita-
tion of meta-analysis, over and above the direct pooling of
data within a Bmega^-analysis. A judicious combination of
fMRI studies of conditioning could in theory be performed,
perhaps along similar lines to the analysis of task-related neu-
ral activation by Dosenbach and colleagues (2006). If possi-
ble, this would certainly afford a more direct contrast of dif-
ferent modeling strategies (e.g., fixed/individual learning
rates, smoothing kernels), and possibly also of procedural dif-
ferences (e.g., reinforcer types, response contingencies).
Moreover, this approach may afford more detailed investiga-
tion of the relationships between individual functional activa-
tions and anatomy, providing that adequate structural data are
available. The overlap between individually defined regions
of interest and brain activations would diminish the necessity

of spatial smoothing and potentially increase the specificity in
regions of high between-participant anatomical variation.

We also restricted our study inclusion to healthy adult
groups. Individual differences in a variety of demographic
factors can influence the patterns of reinforcement-learning-
related neural activation and represent possible unmeasured
sources of intersubject variability. Again, a Bmega^-analysis
with suitably recorded data might provide some control of
these effects. However, the consistency of some of our find-
ings (e.g., left putamen) across methodological dimensions
suggests that these factors may serve to modulate a core pat-
tern of activation rather than to yield qualitative differences.
Overall, because ALE has been argued to be statistically con-
servative (Graham et al., 2013), it is likely that our findings
broadly represent a central, reproducible motif that may pro-
vide a useful reference point for future studies of reinforce-
ment learning and reward-based conditioning studies. Indeed,
an increase in the number of available reinforcement learning
studies would allow greater power to address the full diversity
of reinforcement-learning-related processes in the human
brain. Although the number of studies available was adequate,
further information could be usefully gleaned by increasing
the number of studies (e.g., Rottschy et al., 2012), particularly
if they provided data from designs not well represented in the
present selection (e.g., liquid–TD studies).

Summary

In the present work, we have identified a pattern of human neural
correlates of RPE and EV signals derived from simple reinforce-
ment learning algorithms. Our findings accord well with the
existing literature, particularly with electrophysiological studies
of experimental animals, in our identification of dopamine-rich
regions such as the midbrain and striatum in RPE signaling, and
the ventromedial prefrontal cortex in EV representation. The
main contribution of the present work has been to demonstrate
that various methodological factors can influence the patterns of
findings. These include factors that are possible to control at the
analysis stage (e.g., learning rate estimation, smoothing), but also
factors that must be examined experimentally (e.g., reinforcer
type, behavioral output). Overall, the reinforcement learning
framework has been an empirically successful paradigm for in-
vestigating the neurobiology of appetitive behavior, and we an-
ticipate that a new generation of studies will seek to develop the
implications of these findings further.
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